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A second-order perturbation approach is used to investigate the effects of topo-
graphic uncertainty on a numerical model of shallow water flow. The governing equa-
tion is discretised using finite differences, the resulting nonlinear system expanded
as a Taylor series about the unperturbed water depth to first and second-order, and
the resulting matrix equation solved to derive second-order moments for the model
solution. A Fourier technique is used to estimate the accuracy of the first- and second-
order approximations and indicates that for even small perturbations, second-order
terms are significant. Results are compared to those from Monte Carlo simulations,
showing that significant nonlinear effects are well represented by the second-order
stochastic model, predicting correctly the shift in the mean depth and an increase in
the depth variance. The statistics of the solution are however still well represented
by a Gaussian distribution, and therefore moments greater than order 2 need not be
calculated. c© 2002 Elsevier Science (USA)

Key Words: stochastic differential equations; Monte Carlo methods; shallow water
equations.

1. INTRODUCTION

The application of numerical modelling techniques to environmental problems is ham-
pered by two significant problems. First, our knowledge of the natural environment is subject
to significant levels of uncertainty, exacerbated by the spatial heterogeneity of many natural
fields. Thus model parameters are often poorly known. Second, the equations governing
environmental process tend to be nonlinear, making it difficult to map uncertainty in model
parameters to uncertainty in model predictions. Furthermore, for cases where even the
deterministic problem is computationally intensive, the incorporation of uncertainty (for
example using Monte Carlo techniques) may lead to an intractable problem. We should
therefore seek numerically efficient ways of transforming uncertain model parameters into
uncertain model predictions.
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One approach to the problem of parameter uncertainty is the Monte Carlo method,
whereby a large number of realisations of the random parameter field are generated and
used as input to a deterministic model, and the resulting ensemble of model predictions is
used to derive the statistics of the model solution. This approach has been adopted for both
ground water [1–3] and free surface [4–7] flows and can be used with highly nonlinear (even
chaotic) systems, where model response is far from a smooth function of model parameters.
The disadvantage is a computational one: the technique is of exponential order in the num-
ber of model parameters and is thus impractical for all but the simplest of systems, where
only a few parameters are subject to uncertainty. The direct application of the Monte Carlo
technique to models parameterised by random fields (with effectively infinite degrees of
freedom) may be unfeasible, and some finite subset of possible realisations of the field must
be used and the results taken to be representative of the general problem. The Monte Carlo
method does, however, give a conceptually simple, if computationally intensive, method of
dealing with parameter uncertainty and deals implicitly with nonlinear model behaviour.

Another approach is to deal with uncertainty analytically, through perturbation tech-
niques, which are often applied to groundwater flow problems [8–10] and to overland flow
[11]. Uncertain parameters are decomposed into systematic and random components, and
a Taylor expansion in the random component is used to estimate model response. This
is a relatively efficient technique and has been applied up to second order in the random
components, thus allowing some of the nonlinear behaviour of the system to be modelled.
This technique has yet to be applied to models of shallow water flows with similar problems
of uncertain parameter fields and nonlinear behaviour. As with any approximate technique,
an important aspect is the development of criteria to assess the validity of the first- and
second-order expansions used, so that the appropriate approximation can be used.

The research presented in this paper therefore aims to use first- and second-order per-
turbation techniques to develop a stochastic model of shallow water flow, using the bed
topography as an example of an uncertain, spatially heterogeneous parameterising field.
The stochastic model can then be tested against Monte Carlo simulations using a deter-
ministic numerical model. Since the solutions are unknown, it is difficult to make a priori
judgements concerning the accuracy of first- and second-order approximations, and some
analytical estimate of the properties of the distributions of the model prediction statistics
would be invaluable in selecting the appropriate level of approximation. To this end a Fourier
analysis of the nonlinear problem is used to estimate solution uncertainty in a closed form,
enabling the appropriate approximation to be made according to the flow regime and mag-
nitude of parameter uncertainty. While this is a very simple model of free surface flow,
it can be viewed as a first step towards uncertain 2-D and 3-D flow models, and towards
developing a rationale for more complex modelling studies.

2. MODEL DEVELOPMENT

2.1. Fourier Method

Depth-averaged steady state shallow water flow in one dimension can be described by
the diffusive wave approximation

dz

dx
+ dh

dx
+ q2n2

h10/3
= 0, (1)
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where z is the bed elevation, h is the flow depth, q is the discharge per unit width, and n is
Manning’s friction coefficient. Writing the depth as the sum of an unperturbed value h0 (the
solution for the unperturbed bed elevation) and a perturbation h1, expanding z similarly and
developing a Taylor series for the nonlinear term, gives

dz1

dx
+ dh1

dx
− 10q2n2

3h13/3
0

h1 + 65q2n2

9h16/3
0

h2
1 − 1040q2n2

81h19/3
0

h3
1 + O

(
h4

1

) = 0. (2)

Zero-order terms cancel as they form the solution to the unperturbed problem. The equation
in its linear form is given by

dz1

dx
+ dh1

dx
− a1h1 = 0, (3)

where ai denotes the coefficient of the i th term of the expansion. Equation 3 is easily
solved via a Fourier transform, as long as the random processes describing the bed and
depth perturbations are stationary. This gives expressions for the transform of the depth
perturbation,

H1 = −ik Z1

ik + a1
, (4)

and free surface perturbation h f (=h1 + z1),

H f = a1 Z1

ik + a1
, (5)

with uppercase letters denoting the Fourier transform of the equivalent lowercase variables
and k the spatial wavenumber. The random perturbation fields are now completely defined in
frequency space by their power spectra. The transformed perturbation will clearly depend
on Z1, which can be related to the covariance function of z1 via the Wiener–Kintchine
theorem

|Z1|2 =
∞∫

−∞
Bz(r)eikr dr, (6)

where Bz(r) is the covariance of two points separated by distance r . The dependence of
Bz(r) on the spatial separation of the two points, and not on their absolute position, is a
result of the stationarity of the process. Given an appropriate correlation model, e.g., the
exponential model for Bz(r),

Bz(r) = σ 2
z e− |r |

l , (7)

where σ 2
z is the variance of the process and l the correlation length, the power spectrum of

the depth perturbations is given by

|Z1|2 = 2lσ 2
z

k2l2 + 1
. (8)
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The power spectra for the depth and free surface perturbations can then be used to derive the
variance (covariance at zero lag) of the random depth and free surface perturbation fields
(Wiener–Kintchine theorem again):

σ 2
h = 1

2π

k=+∞∫
k=−∞

k2

k2 + a2
1

2lσ 2
z

k2l2 + 1
dk = σ 2

z

1 + a1l
, (9)

σ 2
f = 1

2π

k=+∞∫
k=−∞

a2
1

k2 + a2
1

2lσ 2
z

k2l2 + 1
dk = σ 2

z a1l

1 + a1l
. (10)

Equations 9 and 10 corroborate our intuitive understanding of free surface flows. For
a1l � 1, the free surface perturbations will be much smaller than those of the bed, and the
depth perturbations will be approximately equal in magnitude, and opposite in sign, to the
bed perturbations. As the correlation length of the bed perturbations increases, the free
surface perturbations also increase, until for a1l 	 1 the free surface perturbations are equal
to the bed perturbations. In this case variations in the depth become small. 1/a1 therefore
defines a characteristic length scale for the flow; bed perturbations below this length tend
to be smoothed out and have little effect on the free surface height, and above this length
they influence the free surface height.

Having determined some statistical properties of the solution to the linearised problem,
we can now estimate the conditions under which the first-order approximation is valid, and
when higher order terms need to be included in the expansion. For example, including terms
in h2

1 in Eq. (2) and taking the expectation value will cause a nonzero mean in the depth
perturbations:

〈
dz1

dx

〉
+

〈
dh1

dx

〉
− a1〈h1〉 + a2

〈
h2

1

〉 = 0. (11)

If we assume that the statistics of z1 and h1 are stationary, the derivative terms vanish, and
the variance of h1 in the last term can be approximated by the expression derived from the
linear solution:

〈h1〉 = a2

a1

σ 2
z

1 + a1l
. (12)

Thus nonlinear effects will produce a positive shift in the mean value of the depth and the free
surface. This effect may well be less than the standard deviation of the depth perturbation
(dominated by a strong negative correlation with the topographic perturbations), but may
be significant if the free surface elevation is of interest. This implies that the condition

σz

h0
� (a1l(1 + a1l))1/2 (13)

must be met for the linear approximation to be valid. This condition is most likely to
be violated for low flow rates, shallow flows (small a1), or bed perturbations with short
correlation lengths (rough topography). The validity of the second-order approximation
can be tested by comparing the magnitude of the second- and third-order terms (again using
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the linear solution as an estimate of the depth perturbations), giving

σz

h0
� (1 + a1l)1/2. (14)

For most natural flows a1l � 1, which implies that third-order terms will be negligible until
the magnitude of the bed perturbation approaches the flow depth. The inequality of Eq. (14)
may still hold for even large bed perturbations (i.e., larger than the flow depth), provided
their correlation length is long enough.

2.2. Monte Carlo Model

The Monte Carlo method uses a deterministic model to map, in a discrete fashion, the
model input parameter space to the solution space. Thus the technique has two components:
a generator for realisations of the input parameter process and a deterministic model to
generate solutions for each realisation, both relying on a finite difference discretisation of
the continuous case.

Before input parameter fields can be generated, some assumptions must be made about
the statistics of the random field. In this case we assume that the field can be represented
as a Gaussian process. Studies of the topography of gravel beds [12, 13] have shown this
to be a reasonable assumption for these types of rivers, and Gaussian statistics have been
used to describe the soil-covered landscape [14, 15]. The Gaussian random field can also be
viewed as a worst case scenario in the maximum-entropy sense given if only second-order
statistics are measured.

Given a continuous zero mean Gaussian random field z(x), with covariance function
given by the exponential model (7), the field is described in its discrete form (a vector
z with n components zi giving the values of the field at points separated by 	x) by its
covariance matrix B:

Bi j = 〈zi z j 〉. (15)

B is clearly symmetric, having n real eigenvalues and orthogonal eigenvectors, and can
therefore be diagonalised using a transformation matrix R whose columns are made up
of the eigenvectors of B. Since a diagonal covariance matrix corresponds to a process of
independent variables (which is easily generated), the original process can be written as

z = R




N(0, λ1)

N(0, λ2)

· · ·
N(0, λn)


, (16)

where N(0, λi ) is a zero mean Gaussian random variable with variance given by the i th
eigenvalue of B, λi .

The deterministic model uses a finite difference first-order accurate discretisation of (1),

hi+1 − hi

	x
+ zi+1 − zi

	x
+ q2n2h−10/3

i = 0, (17)

which results in a nonlinear system of equations which can be solved iteratively using the
Newton–Raphson algorithm. A boundary condition is applied such that the free surface
perturbation at the downstream end of the model domain is zero.
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FIG. 1. Magnitude of free surface perturbations as a function of bed perturbation correlation length for three
values of flow rate, with bed perturbations of 0.1 m. Values predicted by the Fourier method are shown as solid
lines; Monte Carlo results are shown as squares.

Monte Carlo simulations were performed by adding the random perturbations generated
by (16) to an unperturbed bed of uniform slope 10−2, with the friction coefficient set at a
typical value of 0.03. The domain was 200 m long and was discretised into 200 nodes 1 m
apart. The effects of the downstream boundary condition (i.e., zero free surface perturbation)
were eliminated by measuring statistics in the upstream half of the domain only. Figure 1
compares the free surface standard deviation derived from Monte Carlo simulations (104

realisations) and predicted by the Fourier analysis against bed perturbation correlation
length for flow rates q = 1, 2 and 4 m2 s−1. Bed perturbations had a standard deviation
of 0.1 m. There is a reasonable correspondence between the two techniques—except at
short correlation lengths, which is not surprising given that the discrete model will be
unable to distinguish between random fields with correlation lengths less than the grid
spacing.

Figure 2 shows the effect of nonlinear terms on the solutions as the magnitude of the
bed perturbations is increased. The shift in the free surface is predicted well by the Fourier
method. The first-order estimates of the free surface variance are seen to be reasonable
estimates of the variance measured in the Monte Carlo experiment, even when the shift
in the free surface is significant. The criteria for the validity of the linear approximation
(Eq. (13)) is also shown and corresponds to the point where the mean free surface elevation
diverges significantly from its unperturbed value.

2.3. Stochastic Model

We now aim to reproduce the results above via a stochastic finite difference model that
will avoid the need for a large ensemble of simulations and will also be able to cope
with nonstationary fields and irregular unperturbed topography, thus combining the best
features of the Monte Carlo and Fourier methods used above. Writing the finite difference
formulation of Eq. (17) as a nonlinear vector equation,

f(h) = Az, (18)
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FIG. 2. Mean and variance of free surface elevation with increasing bed perturbation magnitude, shown for
the Fourier method (solid and dashed lines) and the Monte Carlo method (error bars). The unperturbed elevation
is shown at 1.1156 m, and the mean downstream slope has been removed. The criterion for the validity of the
first-order approximation is σz � 0.2, agreeing with a significant shift in free surface height starting at ∼0.1 m.

and again using a Taylor expansion to second order we obtain

f(h0) + Jh1 + hT
1 Hh1

2
+ O

(
h3

1

) = A(z0 + z1), (19)

where vector quantities are denoted in bold and matrices by bold capital letters. J and H are
the Jacobian matrix and a vector of Hessian matrices, respectively, with elements given by

Ji j = ∂ fi

∂h j
=




− 1
	x − 10a1

3h−13/3
0

1
	x 0 · · ·

0 − 1
	x − 10a1

3h−13/3
0

1
	x · · ·

· · · · · · · · · · · ·
0 · · · 0 1


, (20)

Hi
jk = ∂2 fi

∂h j∂hk
= 130q2n2

9h16/3
i

for i = j = k, 0 otherwise . (21)

If we assume that the solutions can be well approximated by Gaussian random fields (to
be justified later), then second-order statistics will be sufficient to define those fields. The
first-order solution is given by

〈h1〉 = J−1A〈z1〉 = 0, (22)〈
h1hT

1

〉 = J−1A
〈
z1zT

1

〉
AT J−1,T , (23)

and this gives a solution with zero mean, as before. The second-order approximations are
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made by adding a correction h2 and again substituting the linear solution into the nonlinear
part:

J(h1 + h2) + H′diag
(
J−1Az1zT

1 AT J−1,T
) = Az1. (24)

H′ is the diagonal matrix derived from Eq. (21), and diag denotes a vector made up from
the diagonal elements of the argument matrix. For the mean perturbation this gives the
expression

〈h2〉 = −J−1H′diag
〈
h1hT

1

〉
(25)

and the covariance matrix

〈
h2hT

2

〉 = J−1H′〈K〉H′T J−1,T , (26)

where 〈K〉 is a matrix of fourth-order moments with elements given by 〈K〉i j =
〈h2

1,i h
2
1, j 〉. Since h2 is a linear function of the covariance matrix of h1, the covariance

of h1 and h2 will depend on the third moments of h1, which will be zero for the zero mean
Gaussian process. Thus h1 and h2 are uncorrelated and their variances can be added directly
to give the total variance of the depth perturbations. A similar argument implies that h2 and
z1 are uncorrelated.

Figure 3 compares the behaviour of the second-order stochastic model with the Monte
Carlo simulations and, as with the Fourier method, the shifts in the free surface are well
predicted. However, it is difficult to assess whether the second-order predictions of the
variance are an improvement over the first-order predictions. Figure 4 shows the probability
distributions of the free surface as predicted by the Monte Carlo, Fourier, and second-order
stochastic methods. The second-order stochastic model actually gives a much better fit to
the distribution than is indicated by the variance alone—this is due to the significant tail
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FIG. 3. Mean and variance of free surface elevation with increasing bed perturbation magnitude, shown for the
second-order stochastic method (solid and dashed lines) and the Monte Carlo method (error bars). A performance
similar to that of the Fourier technique is seen.
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FIG. 4. Free surface height probability distributions predicted by Monte Carlo, Fourier, and second-order
stochastic methods. The stochastic distribution is a good approximation to that given by the Monte Carlo method,
apart from the tail at h > 1.4 m.

in the measured Monte Carlo distribution giving a higher estimate for the variance than
the width of the distribution would suggest. The Gaussian distribution is, however, still a
reasonable approximation to the measured distribution.

The main advantage of the stochastic finite difference scheme over the Monte Carlo
method is its computational efficiency. Figure 5 shows the convergence of the mean free
surface height and free surface standard deviation as a function of the number of Monte
Carlo simulations. The expected n−1/2 dependence is shown, with the uncertainty in
the standard deviation being much greater than for the mean. The convergence rates in-
dicate that somewhere between 103 and 104 simulations are required to achieve an estimate
of the standard deviation as accurate as that given by the second-order stochastic model.
Further, 104 Monte Carlo realisations and simulations required 50 s of processor (1.3 GHz
Athlon) time, compared to 2 s for the second-order stochastic model, making the stochastic
model an order of magnitude more efficient in this case.
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FIG. 5. Convergence of Monte Carlo method with increasing number of simulations.
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3. EXTENSION TO 2-D FLOWS

Real shallow water flows, for example overbank flow in channel–floodplain systems or
estuaries, are generally two dimensional in nature, with the governing equations

∇h + ∇z + n2q|q|
h10/3

= 0, (27)

∇ · q = 0. (28)

The discharge is now represented by the vector quantity q. Flow velocities and depths are
spatially heterogeneous, and any stochastic model of flow will have to be two dimensional
to be of any practical use. It would be useful therefore to determine if the criteria for the
validity of the first- and second-order expansions developed here can be applied to two-
dimensional flows. The uncertainty in the nonlinear friction term comes from two sources:
variations in depth and, for the two-dimensional case, variations in velocity. Variations in
depth can be approximated by assuming that the free surface is much smoother than the bed
topography (as demonstrated for the one-dimensional case in Eqs. (9) and (10)), and thus
variations in depth are of the same magnitude as the bed perturbations. We would expect,
therefore, the approximation to Eq. (14), σz � h0, to hold, and thus the criteria for the
validity of the second-order expansion of the friction term in h will be roughly the same for
two-dimensional flows.

Estimating the magnitude of the variations in the discharge is more difficult, as the
analytical solution of even the linearised problem is troublesome. We can, however, estimate
the variations for two special cases and qualitatively extend the results to the general case.
The situation shown on the left in Fig. 6, with topographic variations in the x-direction only,
is essentially one dimensional, so the solutions developed by the Fourier method will be
applicable, and the discharge per unit width will be uniform. The variance of q is therefore
zero in this case. For topographic variations in the y-direction (right side of Fig. 6), the free
surface will be of uniform slope S0 in the x-direction, and the discharge per unit width will
be given by

qx (y) = S1/2
0

n
(hav − z1(y))5/3, (29)

FIG. 6. (Left) Two-dimensional flow with ridges normal to the flow direction. Free surface perturbations are
the same as the 1-D estimates. (Right) Ridges parallel to the flow direction. The free surface is planar, but discharge
now varies in the direction normal to the flow.
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where hav is the mean depth. The standard deviation of q is then given approximately by

σq = 5σz

3h0
q0, (30)

with σz the RMS bed perturbation and h0 and q0 the unperturbed depth and discharge.
Thus the relative variance of q is of the same magnitude as the relative variance in the bed
perturbations. We therefore speculate that a second-order approximation to the nonlinear
friction term, if adequate for the treatment of bed perturbations, is also adequate for flow
perturbations. Furthermore, since the dependence on q is analogous to a power law with
exponent 2, and the depth dependence has exponent 10/3, the second-order approximation
for q|q| should be more accurate than that for the depth. This is very much a “hand wav-
ing” argument, and the hypothesis that a second-order expansion is adequate to represent
variations in the friction term due to the heterogeneous flow field needs to be tested using
a fully two-dimensional model over an ensemble of Monte Carlo simulations.

4. CONCLUSIONS

First- and second-order perturbation approaches to the problem of modelling shallow
water flows over uncertain topography have been developed, and model predictions com-
pare favourably with those from the more computationally intensive Monte Carlo method.
Fourier methods can also be used to estimate criteria for the use of first- and second-order
stochastic models, which also agree well with numerical experiment. These criteria indicate
that if the free surface elevation is of interest, a second-order expansion is required for even
small bed perturbations, while a third-order expansion is not required until the magnitude of
bed perturbations approaches the flow depth. Even when second-order effects are significant
enough to produce sizeable shifts in the mean values of model predictions and increases in
variance, the statistics of model predictions are still well described by Gaussian fields. The
effect of the nonlinearity of the model is to effectively couple second-order moments in the
bed perturbations to first-order moments in the free surface elevation. Thus good estimates
of the bed roughness are required to estimate even the mean free surface elevation, and this
will have consequences for the techniques used for model parameterisation.

The extension to 2-D flows has been explored in a qualitative fashion. The criteria
for the application of first- and second-order expansions, developed using 1-D Fourier
analysis, will still be applicable. We therefore have developed a rationale for the de-
velopment of 2-D stochastic models of diffusive flow over uncertain topography, where
second-order expansions will be adequate for approximating the statistics of model predic-
tions. While the computational advantages of the stochastic method over the Monte Carlo
method are trivial for the 1-D case, they should become a considerable advantage for 2-D
models.

Future work should rigorously test whether the second-order perturbation approach is
also valid for two-dimensional flows, given the variations the discharge bed perturbations
will produce. This will allow the stochastic approach to be applied to real modelling prob-
lems, such as flood and estuarine flows, and the impact of topographic uncertainty on model
predictions can then be assessed. Further work also needs to address the effects of uncer-
tainty in other parameters, most notably the friction coefficient, the effect of using a more
sophisticated process representation (e.g., inclusion of inertia and advection terms), and
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dynamic effects. Source terms arising from random lateral inflows may also be a significant
source of uncertainty in model predictions.
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